Introducción

surface

Bienvenido/a a esta materia que es Análisis Matemático II y a este blog.

  • Antes de escribir una consulta lee primero la sección de Preguntas Frecuentes
  • Si esta es tu primera visita a este blog o recién estás empezando a cursar la materia lee esto.
  • Si ya conocés bien este blog o estás preparando el final lee esto.
  • Si ya aprobastes la materia o buscás consejos de estudiantes anteriores lee esto.

Suerte! :D
Damián.

Curso Z2013 Liliana Gallego

Quedan suspendidos los recuperatorios de este sábado de la profesora Liliana Gallego para el curso Z2013.  Los recuperatorios se tomarán todos después del segundo parcial, y la corrección de los mismos, así como del segundo parcial, quedan a cargo del profesor Victor Carnevali.

Cualquier novedad que tanto Liliana como Victor les quieran hacer llegar la publicarán en el siguiente blog: http://lbgallego.blogspot.com.ar/

2º Parcial Curso de Verano 2015

2do_parcial_verano_2015

T1) Consiste en integrar la función f(x,y) = y sobre el semidisco circular x^2 + y^2 \leq 4 con x \geq 0. En cartesianas \int_{-2}^2 y dy \int_0^{\sqrt{4-x^2}} dx.

E1) z \leq 10 - x^2, y \leq x, z \geq 3x, y \geq 0. La densidad es \delta(x,y,z) = k |y|.

3x \leq z \leq 10 - x^2. Se tiene 0 \leq y \leq x. Luego x \geq 0 y z \geq 0, es decir es en el 1º octante.

Además 3x \leq 10 - x^2, luego x^2 + 3x - 10 \leq 0 es decir (x-2)(x+5) \leq 0 lo cual implica x \leq 2. Luego la masa es

M = k \int_0^2 dx \int_0^x y dy \int_{3x}^{10 - x^2} dz = \frac{62}{15}k

E2) Q'_x - P'_y = 2x - x = x. La región es 2x^2 - 1 \leq y \leq x. En particular 2x^2 - x - 1 \leq 0 es decir -1/2 \leq x \leq 1. Por lo tanto la circulación pedida en orientación antihoraria es

\int_{-1/2}^1 x dx \int_{2x^2 - 1}^x dy = \frac{9}{32}

E3) Parametrizo con g(u,v) = (u \cos(v), u \sin(v), u) con 0 \leq v \leq 2\pi y 0 \leq u \leq 3.
g'_u = (\cos(v), \sin(v), 1)
g'_v = (-u \sin(v), u \cos(v), 0)
N = g'_u \times g'_v = (-u \cos(v), -u \sin(v), u)
La orientación es hacia z^+ pues la coordenada z es u \geq 0.
\int_0^{2\pi} dv \int_0^3 (3 u \cos(v), 3 u \sin(v), 4u) \cdot (-u \cos(v), -u \sin(v), u) du
\int_0^{2\pi} dv \int_0^3 -3u^2 \cos^2(v) - 3u^2 \sin^2(v) + 4u^2 du
\int_0^{2\pi} dv \int_0^3 -3u^2 + 4u^2 du
\int_0^{2\pi} dv \int_0^3 u^2 du = 18 \pi

E4) El punto (0, y_0) es el (0, 1) pues la recta es y = x+1. Es decir que y(0) = 1, y además y'(0) = 1

La ecuación característica es \alpha^2 - 3 \alpha + 2 = 0 es decir \alpha_1 = 1 y \alpha_2 = 2. Luego la SG de la homogénea asociada es y_h = C_1 e^x + C_2 e^{2x}

Para la SP propongo y = A x e^x luego y' = Ae^x + Ax e^x, y'' = 2A e^x + Ax e^x. Reemplazo

2A e^x + A xe^x - 3A e^x - 3A xe^x + 2A xe^x = e^x

(2A-3A) e^x + (A - 3A + 2A)xe^x = e^x

-A = 1 Luego A = -1 y y_p = -xe^x

Por lo tanto la SG es y = C_1 e^x + C_2 e^{2x} - xe^x

y' = C_1 e^x + 2 C_2 e^{2x} - e^x - x e^x

y'(0) = 1 = C_1 + 2C_2 - 1
y(0) = 1 = C_1 + C_2

de donde C_1 = 0 y C_2 = 1. Finalmente la SP pedida es y = e^{2x} - xe^x

1º Parcial Curso de Verano 2015

1er_parcial_verano_2015_final

Solución:

T1) P(x,y) = a + 2(x-x_0)(y-y_0) - 2(x-x_0)^2 - 2(y-y_0)^2. Se tiene \nabla P(x_0,y_0) = (0,0). Si asumimos que el polinomio de Taylor P se desarrolló en el punto (x_0,y_0) entonces las derivadas parciales en ese punto coinciden con las de f, es decir se tiene \nabla f(x_0,y_0) = (0,0), y por lo tanto la gráfica de f en ese punto tiene plano tangente horizontal z = a.

T2) Nos dicen que Im(h) \subseteq C_k(f), por lo tanto f \circ h = k es decir la compuesta g = f \circ h es una función constante. Por lo tanto g'(t) = 0 para todo t \in \mathbb{R}.

E1) f(x,y) = \begin{cases} \frac{xy e^y - y^2}{xy} & xy \neq 0 \\ 1 & xy = 0 \end{cases}
Estudiamos continuidad en (0,0). Se tiene que f(0,0) = 1. Veamos el límite por el camino y=x. \lim_{x \to 0} \frac{x^2 e^x - x^2}{x^2} = \lim_{x \to 0} e^x - 1 = 0. No se si existe el límite doble, pero de existir vale 0 que es distinto que 1, por lo tanto f no es continua en (0,0).

E2) La superficie es una esfera centrada en el origen y de radio \sqrt{6}. Si (x,y,z) es un punto de la esfera, entonces (x,y,z) es un vector normal en dicho punto.

Defino g(x,y,z) = x+y+z-5 y h(x,y,z) = x^2 + y^2 - 2y. Sus gradientes son \nabla g = (1,1,1) y \nabla h = (2x, 2y-2, 0). Entonces N = \nabla g \times \nabla h = (2-2y, 2x, 2y-2-2x)
En el punto A = (0,2,3) se tiene N(A) = (-2, 0, 2) que es un vector tangente a la curva en el punto A.

O sea buscamos puntos de la esfera donde la normal es de la forma (-\lambda,0,\lambda), como el radio es \sqrt{6} dichos puntos son (-\sqrt{3}, 0, \sqrt{3}) y (\sqrt{3}, 0, -\sqrt{3})

E3) Llamo f(x,y) a la función u(x,y).
Defino F(x,y,u) = u e^{ux} - 2x - y. Se tiene F \in C^1.
F'_x = u^2 e^{ux} - 2
F'_y = -1
F'_u = e^{ux} + ux e^{ux}

En (x,y) = (0,1) se tiene u = 1. Sea A = (x,y,u) = (0,1,1)
F'_x(A) = 1 - 2 = -1
F'_y(A) = -1
F'_u(A) = 1 + 0 = 1 \neq 0

Luego f'_x(0,1) = 1 y f'_y(0,1) = 1, es decir \nabla f(0,1) = (1,1) con f diferenciable en (0,1).

El versor que piden es v = \overline{(3,2) - (0,1)}{|| (3,1) ||} = (3,1) / \sqrt{10}

La derivada direccional pedida es (1,1) (3,1)/ \sqrt{10} = 4/ \sqrt{10}.

La derivada es nula en los versores (a,b) tales que (a,b) (1,1) = 0, es decir en v_{1,2} = \pm (1, -1) / \sqrt{2}

E4) f(x,y) = g(y) y + x^2 + y^2.

x^2 - y^2 = C, 2x - 2yy' = 0, la EDO de la familia ortogonal es x + y/y' = 0, xy' + y = 0, xy' = -y, dy/y = -dx/x, \ln|y| = - \ln|x| + C, |y| = |x^{-1}| e^C, y = k/x, como pasa por (1,1) se tiene k=1 y luego y = 1/x, luego g(y) = 1/y.

f(x,y) = y/y + x^2 + y^2. Si extendemos el dominio por continuidad a \mathbb{R}^2, se tiene f(x,y) = 1 + x^2 + y^2, y el único punto crítico es (0,0) pues \nabla f(x,y) = (2x,2y). Como f(0,0) = 1 \leq f(x,y) para todo (x,y) se tiene que f(0,0) = 1 es mínimo absoluto y relativo.

Final 09/12/2014

10830817_10203465888358941_1382161473064759895_o

Gracias a Agustín y a Luis por enviarme este final.

Resuelvo la parte práctica del T1.  Sabemos que area(D_{xy}) = 35 y que el cambio de variables está dado por (x,y) = (2u+v, u-3v), y la región correspondiente en el plano uv se llama D_{uv} y nos piden calcular su área.

Sea g(u,v) = (2u+v, u-3v) (definí la función del cambio de variables).  Se tiene que Dg = \begin{pmatrix} 2 & 1 \\ 1 & -3 \end{pmatrix}, y que | \det Dg | = | -6 - 1 | = 7.  Por el teorema de cambio de variables

35 = area(D_{xy}) = \iint_{D_{xy}} dxdy = \iint_{D_{uv}} | \det Dg | dudv = 7 \ area(D_{uv}).

Por lo tanto el área pedida es area(D_{uv}) = \frac{35}{7} = 5

Final 02/12/2014

final_02_12_2014

Gracias Nicolás por enviarme el final.  Estos días no voy a poder ir a las fechas de final, así que dependo de que me lo envíen de alguna forma para poder subirlo al blog.  Mi dirección de correo es dsilvestre@frba.utn.edu.ar.

Final 01/10/2014

final_01_10_2014

T1) f(0,0) = 4 es mínimo local (y global)
T2) div(rot(f)) = 0 (justificar usando Schwarz)

E1) El flujo da 22 (orientando hacia arriba).
E2) La circulación da \frac{22}{15}.
E3) f(2.02, 1.98) \approx 3.016.
E4) La circulación da 24.

Agrego gráfico del ejercicio E1. En azul está la superficie, en verde el plano, y en rojo la proyección sobre el plano xy.

final_01_10_2014_ej1