1º Parcial Curso de Verano 2015

1er_parcial_verano_2015_final

Solución:

T1) P(x,y) = a + 2(x-x_0)(y-y_0) - 2(x-x_0)^2 - 2(y-y_0)^2. Se tiene \nabla P(x_0,y_0) = (0,0). Si asumimos que el polinomio de Taylor P se desarrolló en el punto (x_0,y_0) entonces las derivadas parciales en ese punto coinciden con las de f, es decir se tiene \nabla f(x_0,y_0) = (0,0), y por lo tanto la gráfica de f en ese punto tiene plano tangente horizontal z = a.

T2) Nos dicen que Im(h) \subseteq C_k(f), por lo tanto f \circ h = k es decir la compuesta g = f \circ h es una función constante. Por lo tanto g'(t) = 0 para todo t \in \mathbb{R}.

E1) f(x,y) = \begin{cases} \frac{xy e^y - y^2}{xy} & xy \neq 0 \\ 1 & xy = 0 \end{cases}
Estudiamos continuidad en (0,0). Se tiene que f(0,0) = 1. Veamos el límite por el camino y=x. \lim_{x \to 0} \frac{x^2 e^x - x^2}{x^2} = \lim_{x \to 0} e^x - 1 = 0. No se si existe el límite doble, pero de existir vale 0 que es distinto que 1, por lo tanto f no es continua en (0,0).

E2) La superficie es una esfera centrada en el origen y de radio \sqrt{6}. Si (x,y,z) es un punto de la esfera, entonces (x,y,z) es un vector normal en dicho punto.

Defino g(x,y,z) = x+y+z-5 y h(x,y,z) = x^2 + y^2 - 2y. Sus gradientes son \nabla g = (1,1,1) y \nabla h = (2x, 2y-2, 0). Entonces N = \nabla g \times \nabla h = (2-2y, 2x, 2y-2-2x)
En el punto A = (0,2,3) se tiene N(A) = (-2, 0, 2) que es un vector tangente a la curva en el punto A.

O sea buscamos puntos de la esfera donde la normal es de la forma (-\lambda,0,\lambda), como el radio es \sqrt{6} dichos puntos son (-\sqrt{3}, 0, \sqrt{3}) y (\sqrt{3}, 0, -\sqrt{3})

E3) Llamo f(x,y) a la función u(x,y).
Defino F(x,y,u) = u e^{ux} - 2x - y. Se tiene F \in C^1.
F'_x = u^2 e^{ux} - 2
F'_y = -1
F'_u = e^{ux} + ux e^{ux}

En (x,y) = (0,1) se tiene u = 1. Sea A = (x,y,u) = (0,1,1)
F'_x(A) = 1 - 2 = -1
F'_y(A) = -1
F'_u(A) = 1 + 0 = 1 \neq 0

Luego f'_x(0,1) = 1 y f'_y(0,1) = 1, es decir \nabla f(0,1) = (1,1) con f diferenciable en (0,1).

El versor que piden es v = \overline{(3,2) - (0,1)}{|| (3,1) ||} = (3,1) / \sqrt{10}

La derivada direccional pedida es (1,1) (3,1)/ \sqrt{10} = 4/ \sqrt{10}.

La derivada es nula en los versores (a,b) tales que (a,b) (1,1) = 0, es decir en v_{1,2} = \pm (1, -1) / \sqrt{2}

E4) f(x,y) = g(y) y + x^2 + y^2.

x^2 - y^2 = C, 2x - 2yy' = 0, la EDO de la familia ortogonal es x + y/y' = 0, xy' + y = 0, xy' = -y, dy/y = -dx/x, \ln|y| = - \ln|x| + C, |y| = |x^{-1}| e^C, y = k/x, como pasa por (1,1) se tiene k=1 y luego y = 1/x, luego g(y) = 1/y.

f(x,y) = y/y + x^2 + y^2. Si extendemos el dominio por continuidad a \mathbb{R}^2, se tiene f(x,y) = 1 + x^2 + y^2, y el único punto crítico es (0,0) pues \nabla f(x,y) = (2x,2y). Como f(0,0) = 1 \leq f(x,y) para todo (x,y) se tiene que f(0,0) = 1 es mínimo absoluto y relativo.

Anuncios

4 comentarios en “1º Parcial Curso de Verano 2015

  1. Buenas! Creo que hay un error en el punto E4, cuando estas haciendo la trayectoria ortogonal.
    \ln|y| = – \ln|x| + C ; ahí aplicas propiedades del logaritmo y debería quedar:
    |y| = |x^{-1}| + e^C ; pero en el procedimiento pusiste |y| = |x^{-1}| e^C.
    Puede ser o estoy haciendo algo mal?

  2. Hola Damián, tengo una pregunta, el T1 lo hice distinto y me da 1 (por lo tanto es continua). Yo lo dividí en la resta de dos limites: e^y (1) y/x (2). El primer límite me da 1 y el segundo 0 por lo cual el límite me queda 1 siendo entonces f continúa en (0,0). Que estoy haciendo mal?

    Gracias!

    • Hola Matias,
      El limite tendiendo al origen de y/x no es cero, no existe, proba acercandote por rectas de la forma y=mx, como depende de m no existe.
      Saludos,
      Damián.

Responder

Por favor, inicia sesión con uno de estos métodos para publicar tu comentario:

Logo de WordPress.com

Estás comentando usando tu cuenta de WordPress.com. Cerrar sesión / Cambiar )

Imagen de Twitter

Estás comentando usando tu cuenta de Twitter. Cerrar sesión / Cambiar )

Foto de Facebook

Estás comentando usando tu cuenta de Facebook. Cerrar sesión / Cambiar )

Google+ photo

Estás comentando usando tu cuenta de Google+. Cerrar sesión / Cambiar )

Conectando a %s