Tp.1 Ej.4.b

Sábado, agosto 23rd, 2014

Halle la ecuación diferencial de la familia de…

b) … hipérbolas con focos en el eje x, centro en el origen y semiejes a variable y b=1.

Solución:

La ecuación de una hipérbola con centro en (x_0,y_0), focos en el eje x y semiejes a y b es

\frac{(x-x_0)^2}{a^2} - \frac{(y-y_0)^2}{b^2} = 1

Como b=1 y el centro es el origen (x_0,y_0) = (0,0) nos queda

\frac{x^2}{a^2} - y^2 = 1 (1)

Esa es la ecuación de la familia, queremos la ecuación diferencial asociada que como hay un sólo parámetro debe ser de primer orden, por lo tanto derivo una vez

\frac{2x}{a^2}- 2yy' = 0

como quedó la constante arbitraria, todavía no es la ecuación diferencial, multiplico por x/2

\frac{x^2}{a^2} - xyy' = 0

sumo xyy'

\frac{x^2}{a^2} = xyy'

y reemplazando en (1) obtenemos la ecuación diferencial buscada:

xyy' - y^2 = 1

Anuncios

Responder

Por favor, inicia sesión con uno de estos métodos para publicar tu comentario:

Logo de WordPress.com

Estás comentando usando tu cuenta de WordPress.com. Cerrar sesión / Cambiar )

Imagen de Twitter

Estás comentando usando tu cuenta de Twitter. Cerrar sesión / Cambiar )

Foto de Facebook

Estás comentando usando tu cuenta de Facebook. Cerrar sesión / Cambiar )

Google+ photo

Estás comentando usando tu cuenta de Google+. Cerrar sesión / Cambiar )

Conectando a %s

A %d blogueros les gusta esto: