Integrador Edith Amed 19/07/14

integrador_edith_19_07_2014

Adjunto la resolución que me entregó la profesora
integrador_19_07_2014

Anuncios

Final 29/07/2014

final_29_07_2014

Respuestas:

T1) La derivada máxima de h en (2,2) es 13 \sqrt{5}

T2) La ecuación diferencial es y^3 + xy^2 y' + y' = 0

La solución particular es xy^2 - y = 1

E1) El volúmen es \frac{128}{3}\pi

E2) La circulación es \frac{13}{3}

E3) El área es \frac{ \sqrt{11} }{3} \pi

E4) El flujo pedido es 8 \pi orientando hacia z^+.

Final 15/07/2014

final_15_07_2014

T1)

\nabla f(x,y) = (2x,8y)
\nabla f(0,0) = (0,0)
Hf(0,0) = \begin{pmatrix} 2 & 0 \\ 0 & 8 \end{pmatrix}
f(0,0) es mínimo local.

T2) \int_0^2 dx \int_0^{\sqrt{1 - (x-1)^2}} x^2 + y^2 dy = \boxed{ \frac{3}{4} \pi }
(no se pedía calcular, sólamente expresar)

E1) Un vector tangente a la recta es n = (1,6,-2). Podemos parametrizar la recta con
g(t) = (1+t, 2+6t, 2-2t) con 0 \leq t \leq 1

Luego la circulación es \int_C f dc = \int_0^1 (2+2t, 6+18t, 4-4t) \cdot (1,6,-2) dt = \boxed{ 89 }.

También se podía resolver usando función potencial.

E2) Proyecto sobre xy y uso polares. Queda la integral

A = \int_0^{2\pi} d\phi \int_0^1 \frac{\sqrt{2}}{\sqrt{2-\rho^2}} \rho d\rho = \boxed{ (4-2\sqrt{2}) \pi }

E3) Queda
y_h = C_1 + C_2 e^x
y_p = -x^2 - 2x
y = C_1 + C_2 e^x - x^2 - 2x
Usando y(0) = 1 y que y'(0) = -2 resulta la SP buscada
\boxed{ y = -x^2 - 2x + 1 }

E4) Proyecto sobre xy orientando hacia z positivo, queda la integral (con abuso de notación)

\int_0^2 dx \int_0^x (2xy, 2yz, 4yz) \cdot (2x,0,1) dy

Cambiando por el z de la superficie

\int_0^2 dx \int_0^x 4x^2 y + 4y (4-x^2) dy = \boxed{ \frac{64}{3} }

2º Parcial 12/07/2014 (Amed)

amed_12_07_2014

1)

amed1

Nos dan f(x,y,z) = (y,-x,z) y \Sigma = \begin{cases} z = 12 - 3x^2 - 3y^2 \ \ (1) \\ z \geq 3x^2 + 3y^2 \ \ (2) \end{cases}

Nos piden calcular \iint_\Sigma f dS = \iiint_H div(f) dV - \iint_T f dS

donde T es la superficie tapa z=6 con x^2 + y^2 \leq 2 orientada hacia abajo.

Luego, como div(f) = 0+0+1 = 1, nos queda

\int_0^{2\pi} d\phi \int_0^{\sqrt{2}} \rho d\rho \int_6^{12-3\rho^2} dz + 6 \int_0^{2\pi} d\phi \int_0^{\sqrt{2}} \rho d\rho

= 18 \pi + 12\pi = \boxed{30\pi}

En el gráfico podemos ver la superficie \Sigma (azul) junto con el plano (rojo) y la proyección (verde)

2)

amed2

Nos dan rot(f) = (x,y,-2z) y C = \begin{cases} x^2 + y^2 = 6y \\ x^2 + y^2 + z^2 = 36 \\ z \geq 0 \end{cases}

Nos piden calcular \int_C f dC = \iint_{\Sigma} Rot(f) dS donde \Sigma es (por ejemplo) la esfera x^2 + y^2 + z^2 = 36 junto con x^2 + (y-3)^2 \leq 9.

Luego, si definimos g(x,y,z) = x^2 + y^2 + z^2 - 36 nos queda \nabla g = (2x, 2y, 2z) y por lo tanto

\iint_{\Sigma_{xy}} (x,y,-2z) \cdot \frac{(2x,2y,2z)}{2z} dxdy

donde z es un abuso de notación a reemplazar con la ecuación de la superficie (la esfera). Por lo tanto queda

\iint_{\Sigma_{xy}} \frac{x^2 + y^2 - 2z^2}{z} dxdy

\int_0^{\pi} d\phi \int_0^{6 \sin(\phi)} \frac{3\rho^2 - 72}{ \sqrt{36 - \rho^2} } \rho d\rho = \boxed{-144}

En el gráfico podemos ver la curva (azul) la porción de esfera que tomamos como \Sigma (en cyan). La esfera y el cilindro se ven en transparencia verde y rojo.

3)

amed3

amed4

amed5

Nos dan H = \begin{cases} x^2 + y^2 \geq 3z^2 \ \ (1) \\ x^2 + y^2 + z^2 \leq 4 \ \ (2) \\ \textrm{1er octante} \end{cases} con densidad \delta(x,y,z) = k |z|

Nos piden la masa M = \iiint_H \delta dV

De (1) y (2) la curva intersección es \begin{cases} x^2 + y^2 = 3z^2 \\ x^2 + y^2 + z^2 = 4 \end{cases}, por lo tanto 3z^2 = 4-z^2, es decir 4z^2 = 4 por ser 1º octante resulta z=1 con x^2 + y^2 = 3

En cilíndricas

M = k \int_0^{\pi/2} d\phi \int_0^{\sqrt{3}} \rho d\rho \int_0^{\rho/\sqrt{3}} z dz + k \int_0^{\pi/2} d\phi \int_{\sqrt{3}}^2 \rho d\rho \int_0^{\sqrt{4 - \rho^2}} z dz

M = k \frac{3}{16} \pi + k \frac{\pi}{16} = \boxed{k \frac{\pi}{4}}

En esféricas, observando que en el plano yz se produce una recta y = \sqrt{3}z se tiene que \beta = \arctan(\sqrt{3}) = \frac{\pi}{3} y por lo tanto

M = k \int_0^{\pi/2} d\alpha \int_{\pi/3}^{\pi/2} \sin(\beta) \cos(\beta) d\beta \int_0^2 \rho^3 d\rho = \boxed{k \frac{\pi}{4}}

donde se tuvo en cuenta el jacobiano \rho^2 \sin(\beta) y la densidad de masa transformada k \rho \cos(\beta).

En los gráficos vemos distintas perspectivas de la misma región M. Notar que cambia el techo del semicono (verde) por la semiesfera (azul).

4a)

amed6

En este enunciado había que corregir donde dice superficie de nivel “7” en realidad va superficie de nivel “0”.

Nos dan f(x,y,z) = (2x, 2y, 2z-4), U es la función potencial de f tal que U(1,2,1) = 2.

La superficie es \Sigma = \begin{cases} C_0(U) \\ y \geq x \\ z \leq 2 \\ \textrm{1er octante} \end{cases}

Buscamos la función potencial y nos queda U(x,y,z) = x^2 + y^2 + z^2 - 4z + C luego como U(1,2,1) = 1 + 4 + 1 - 4 + C = 2 se tiene que C = 0 por lo que U(x,y,z) = x^2 + y^2 + z^2 - 4z.

Por lo tanto la superficie es \Sigma = \begin{cases} x^2 + y^2 + (z-2)^2 = 4 \\ y \geq x \\ z \leq 2 \\ \textrm{1er octante} \end{cases}

Nos piden el área de \Sigma, y como

\nabla U = (2x, 2y, 2z-4)
|| \nabla U || = \sqrt{4x^2 + 4y^2 + (2z-4)^2} = \sqrt{4(x^2 + y^2) + 4(z-2)^2} = 2 \sqrt{x^2 + y^2 + (z-2)^2} = 2 \sqrt{4} = 4

y además

|U'_z| = |2z-4| = |2(2-\sqrt{4-\rho^2}) - 4| = 2 \sqrt{4-\rho^2}

se tiene que

A = \iint_\Sigma dS = \int_{\pi/4}^{\pi/2} d\phi \int_0^2 \frac{4 \rho}{2 \sqrt{4-\rho^2}} d\rho = \boxed{\pi}

En el gráfico se ve la superficie \Sigma (azul), y su proyección sobre el plano xy (rojo).

4b)

amed7

Nos dan f(x,y,z) = (-2y, 2x, z) y la superficie \Sigma = \begin{cases} x^2 + y^2 = 6y \ \ (1) \\ x^2 + y^2 + z^2 \leq 9 \ \ (2) \\ \textrm{1er octante} \end{cases}.

Nos piden el flujo de f sobre \Sigma. De (1) y (2) sacamos \begin{cases} x^2 + y^2 = 6y \\ x^2 + y^2 + z^2 = 9 \end{cases} eliminando x obtenemos 6y - y^2 = 9 - y^2 - z^2 luego z^2 + 6y = 9 luego la proyección en el plano yz es la región del 1er cuadrante con y \leq \frac{3}{2} - \frac{z^2}{6}

Defino g(x,y,z) = x^2 + y^2 - 6y, luego \nabla g = (2x, 2y - 6, 0), y el flujo pedido orientado hacia x^+ es

\int_0^3 dz \int_0^{\frac{3}{2} - \frac{z^2}{6}} (-2y, 2x, z) \cdot \frac{(2x, 2y-6,0)}{2x} dy

donde x es un abuso de notación a reemplazar con la superficie de ecuación (1), por lo tanto nos queda

\int_0^3 dz \int_0^{\frac{3}{2} - \frac{z^2}{6}} \frac{-4xy + 4xy - 12x}{2x} dy

\int_0^3 dz \int_0^{\frac{3}{2} - \frac{z^2}{6}} -6 dy = \boxed{108}

En el gráfico se la sección de esfera (verde) y del cilindro (cyan) como transparencias. También se la superficie \Sigma (azul, salió un poco verde por la esfera) y la proyección sobre el plano yz (rojo).