2º Parcial curso de Verano 2014

Viernes, febrero 28th, 2014

2do_parcial_verano_2014a

Solución:

T1) Nos dan el campo
f(x,y,z) = (2xz, x, y^2)
cuya divergencia es
div(f) = 2z

Interpreto el cuerpo C como
C = \begin{cases} 0 \leq y \leq b \\ x^4 \leq z \leq 4 \\ 0 \leq x \leq \sqrt{2} \end{cases}

En realidad podría considerarse que se trata de -\sqrt{2} \leq x \leq 0 o bien 0 \leq x \leq \sqrt{2}, pero por simetría del cuerpo y del campo, daría lo mismo en ambos casos, por eso considero el segundo.

Por otro lado no sabemos si b\geq 0 o b \leq 0, pero como la altura en y es b, y el integrando no depende de y, en ambos casos queda que el flujo saliente pedido es la integral de

2|b| \int_0^{\sqrt{2}} dx \int_{x^4}^4 z dz = \frac{128}{9} \sqrt{2} |b|
lo cual concuerda con el wolfram.

El siguiente es un gráfico del cuerpo C con b=1

2do_parcial_verano_2014_t1
reparametrize(f1,f2,f3,iv,iv0,iv1,dv,dv0,dv1) :=
apply( 'parametric_surface, append(
subst([ iv = 'u , dv = (1-'v)*subst([iv='u],dv0) + 'v * subst([iv='u],dv1) ], [f1,f2,f3]),
['u, iv0, iv1, 'v, 0, 1])
);
draw3d(surface_hide = true,
xlabel = "x", ylabel = "y", zlabel = "z",
color="dark-blue",
reparametrize(x, 0, z, x,0,sqrt(2),z,x^4,4),
reparametrize(x, 1, z, x,0,sqrt(2),z,x^4,4),
reparametrize(x, y, x^4, x,0,sqrt(2),y,0,1),
reparametrize(x, y, 4, x,0,sqrt(2),y,0,1),
reparametrize(0, y, z, y,0,1,z,0,4),
reparametrize(sqrt(2), y, z, y,0,1,z,4,4)
);


T2) y'' - 2y' + y = x e^x + 5
Resuelvo la homogénea asociada, cuya ecuación característica es
\alpha^2 - 2\alpha + 1 = 0
Tiene raíz \alpha = 1 doble, luego
y_h = C_ 1 e^x + C_2 x e^x

Para la SP podemos probar con coeficientes indeterminados, pero va a fallar con Axe^x, y con Ax^2e^x, funciona proponiendo
y_p = Ax^3 e^x + B
y' = 3Ax^2 e^x + Ax^3 e^x
y'' = 6Ax e^x + 3Ax^2e^x + 3Ax^2 e^x + Ax^3 e^x = x^3 e^x (A) + x^2e^x(3A + 3A) + xe^x(6A)

Reemplazo
x^3 e^x (A) + x^2e^x(3A + 3A) + xe^x(6A) - 6Ax^2e^x -2Ax^3 e^x + Ax^3e^x + B = xe^x + 5
x^3 e^x (A-2A+ A) + x^2e^x(3A + 3A -6A) + xe^x(6A) + B = xe^x + 5

6A = 1 y B = 5, luego
y_p = \frac{1}{6}x^3 e^x + 5

Finalmente, la SG buscada es
y = y_h + y_p
y = C_ 1 e^x + C_2 x e^x + \frac{1}{6}x^3 e^x + 5
lo cual concuerda con el wolfram.


E1) Nos dan el campo
f(x,y,z) = (xy, y^2, z^2)

La curva C la parametrizo con
g(t) = (r \cos(t), r \sin(t) , k) con 0 \leq t \leq 2\pi

Luego la circulación pedida da
\int_0^{2\pi} (r^2 \cos(t) \sin(t), r^2 \sin^2(t), k^2) \cdot (-r\sin(t), r\cos(t), 0) dt

\int_0^{2\pi} \underbrace{-r^3 \sin^2(t) \cos(t) + r^3 \sin^2(t) \cos(t)}_{0} dt = 0

Aún así el campo no es conservativo, pues no cumple la condición necesaria de que su matriz jacobiana sea simétrica:

Df = \begin{pmatrix} y & x & 0 \\ 0 & 2y & 0 \\ 0 & 0 & 2z \end{pmatrix}


E2) El recinto D es

D = \begin{cases} 1 \leq x+y \leq 4 \\ -2 \leq x-2y \leq 1 \end{cases}

Propongo un cambio de variables de forma tal que
u = x+y
v = x - 2y

Invirtiendo el sistema obtenemos
x = \frac{2u+v}{3}
y = \frac{u-v}{3}

Luego g(u,v) = (\frac{2u+v}{3}, \frac{u-v}{3})
Dg =  \begin{pmatrix} \frac{2}{3} & \frac{1}{3} \\ \frac{1}{3} & \frac{-1}{3} \end{pmatrix}
|det(Dg)| = |\frac{-2}{9} - \frac{1}{9}| = \frac{1}{3}

Determino el recinto transformado
W = \begin{cases} 1 \leq u \leq 4 \\ -2 \leq v \leq 1 \end{cases}

Por lo tanto

\iint_D dxdy = \iint_W \frac{1}{3} dudv = \frac{1}{3} \iint_W dudv

O sea que la relación entre las áreas es

\frac{\iint_D dxdy}{\iint_W dudv} = \frac{1}{3}

y el área pedida es

\frac{1}{3} \int_1^4 du \int_{-2}^{1} dv = 3


E3) Nos piden la masa del cuerpo
H = \begin{cases} x \geq y^2 + 4z^2 \\ x \leq 4 \end{cases}
con densidad \delta(x,y,z) = x^2 + z^2

Proyectando sobre el plano yz nos queda una elipse y^2 + 4z^2 \leq 4

Utilizo el cambio de variables
x = x
y = \rho \cos(\phi)
z = \frac{1}{2}\rho \sin(\phi)

|det(Dg)| = \frac{\rho}{2}

La masa pedida es
M = \frac{1}{2} \int_0^{2\pi} d\phi \int_0^2 \rho d\rho \int_{\rho^2}^4 (x^2 + \frac{\rho^2}{4} \sin^2(\phi)) dx = \frac{98}{3} \pi
según wolfram.


E4) La curva es abierta, la cerramos con una tapa para utilizar rotor, la superficie que tomo es el plano
\Sigma = \begin{cases} z=1 \\ y \geq 0 \\ x^2 + y^2 \leq 3 \end{cases}

rot(f) = \left| \begin{matrix} i & j & k \\ \frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\ y & 2x & -1 \end{matrix} \right|
= (0 - 0, 0 - 0, 2 - 1) = (0,0,1)

Luego orientando la superficie hacia arriba tenemos
\iint_{\Sigma} rot(f) dS = \frac{3}{2} \pi
(es la mitad del área de un círculo de radio \sqrt{3})

Calculo la circulación sobre la curva tapa T, que parametrizo como
g(t) = (t,0,1) con -\sqrt{3} \leq t \leq \sqrt{3}
g'(t) = (1,0,0)

\int_T f dc = \int_{-\sqrt{3}}^{\sqrt{3}} (0, 2t, -1)(1,0,0) dt = 0

Luego como \int_C dc + \int_T dc = \iint_{\Sigma} rot(f) dS, se tiene que
\int_C dc = \frac{3}{2} \pi

Como me pide en la otra orientación, la circulación pedida es \frac{-3}{2}\pi

Anuncios

2 comentarios el “2º Parcial curso de Verano 2014

  1. Mario dice:

    Pregunta del T1…
    si b>0, la integral en y se define entre 0 y b, barrow: (b)-(0)=b
    si b<0, seria entre -b y cero: (0)-(-b)=b
    … es como que el resultado no cambia, en qué le pifio?
    Gracias!

Responder

Por favor, inicia sesión con uno de estos métodos para publicar tu comentario:

Logo de WordPress.com

Estás comentando usando tu cuenta de WordPress.com. Cerrar sesión / Cambiar )

Imagen de Twitter

Estás comentando usando tu cuenta de Twitter. Cerrar sesión / Cambiar )

Foto de Facebook

Estás comentando usando tu cuenta de Facebook. Cerrar sesión / Cambiar )

Google+ photo

Estás comentando usando tu cuenta de Google+. Cerrar sesión / Cambiar )

Conectando a %s

A %d blogueros les gusta esto: