1º Parcial Curso de Verano 2014

Sábado, febrero 22nd, 2014

1er_parcial_verano_2014a

Solución:

T1) Dado f(x,y) = 1 + |y-x|, debemos ver si f(1,1) es extremo local.

Cláramente si z < 1 entonces no pertenece a la imágen de f. De hecho el conjunto imágen es Im(f) = [1, +\infty). Por lo tanto f(1,1) = 1 es mínimo absoluto, y por lo tanto también es extremo local (mínimo local).


T2) Dada y y' = x, queremos ver si y^2 = x^2 + C es la SG. Tanto la EDO como la familia son de primer orden. Además derivando la familia obtenemos 2yy' = 2x, por lo tanto efectívamente es la SG.

Obtenemos la SP que pasa por (1, -2). Debe cumplir 4 = 1 + C, o sea C = 3, por lo tanto la SP pedida es y^2 = x^2 + 3


E1) Parametrizo \Sigma con g(u,v) = (u, uv+v - uv^2, v). Busco sus puntos regulares

g'_u = (1, v - v^2, 0)
g'_v = (0, u+1 - 2uv, 1)

v = g'_u \times g'_v = (v - v^2, -1, u+1-2uv) \neq 0

Por lo tanto todos sus puntos son regulares.

Para que la recta normal sea paralela al eje y, debe cumplirse que v \sslash (0,1,0), es decir

(v-v^2, -1, u+1-2uv) = \lambda(0,1,0)

Debe ser \lambda = -1 y además cumplirse

v - v^2 = 0
u+1-2uv = 0

De la primera, v = 0 ó v = 1.
En la segunda, u = -1 ó u=1 respectivamente.

Es decir se cumple para (u,v) = (-1,0) y para (u,v) = (1,1)
Por lo tanto los puntos pedidos son X_0 = g(-1,0) = (-1, 0, 0) y X_2 = (1,1,1)

Calculamos los planos tangentes en dichos puntos. Primero en X_0
(x+1,y,z)(0,-1,0) = 0
y = 0

Ahora en X_1
(x-1,y-1,z-1)(0,-1,0) = 0
y = 1


E2) Nos dan h(x,y) = x f(xy)

Queremos aproximar h(1.01, 0.99). Como f es diferenciable en 1, h es diferenciable en (1,1), luego

h(x,y) \approx h(1,1) + h'_x(1,1)(x-1) + h'_y(1,1)(y-1)

h'_x = f(xy) + xy f'(xy)
h'_y = x^2 f'(xy)

Luego, como f(1) = 2 se tiene h(1,1) = 2, y
h(x,y) \approx 2 + (2 + f'(1))(x-1) + f'(1)(y-1)
h(1.01, 0.99) \approx 2 + (2 + f'(1))(0.01) - f'(1)(0.01)
h(1.01, 0.99) \approx 2 + \frac{2}{100} = 2.02


E3) La curva C está sobre la superficie \Sigma de ecuación z = x + xy, y su proyección sobre el plano xy es de ecuación y = x^2.

Parametrizo la curva con g(t) = (t, t^2, t + t^3). Calculo el punto X_0 = (1, y_0, z_0) = g(1) = (1,1, 2).

Su derivada es g'(t) = (1, 2t, 1 + 3t^2). Un vector tangente en X_0 es g'(1) = (1,2,4). Por lo tanto el plano normal es de ecuación
(x-1,y-1,z-2)(1,2,4) = 0
x-1 +2y-2 +4z-8 = 0
x+2y+4z = 11
Si tiene un punto en común con el eje x el mismo verifica y=z=0, es decir x = 11, por lo tanto el único punto en común es (11,0,0)


E4) La ecuación yz + \ln(x+y+z-3) +x-3 = 0 define z = f(x,y) en un entorno de (x_0, y_0) = (2,1).

Defino F(x,y,z) = yz + \ln(x+y+z-3) +x-3, luego

F'_x = \frac{1}{x+y+z-3} + 1
F'_y = z + \frac{1}{x+y+z-3}
F'_z = y + \frac{1}{x+y+z-3}

Vemos que F \in C^1 en su dominio.

Además en x_0=2, y_0=1 se tiene
z + \ln(z) = 1
por lo tanto z_0 = 1

En el punto X_0 = (2,1,1)

F'_x(X_0) = 2
F'_y(X_0) = 2
F'_z(X_0) = 2 \neq 0

Por lo tanto por Cauchy-Dini se tiene que f es diferenciable en (2,1) y además \nabla f(1,2) = (-1,-1)

Por lo tanto, la dirección de máxima derivada direccional es r_{max} = \frac{(-1,-1)}{\sqrt{2}}, y el valor de dicha derivada máxima es f'_{max}(1,2) = ||\nabla f(1,2)|| = \sqrt{2}

Anuncios

2 comentarios el “1º Parcial Curso de Verano 2014

  1. Javier Lujan dice:

    Hola profesor, quería saber si va a subir las notas del primer parcial del curso de verano.

    Saludos.

  2. Julian dice:

    Buenas tardes, me sumo al pedido de las notas. Gracias

Responder

Por favor, inicia sesión con uno de estos métodos para publicar tu comentario:

Logo de WordPress.com

Estás comentando usando tu cuenta de WordPress.com. Cerrar sesión / Cambiar )

Imagen de Twitter

Estás comentando usando tu cuenta de Twitter. Cerrar sesión / Cambiar )

Foto de Facebook

Estás comentando usando tu cuenta de Facebook. Cerrar sesión / Cambiar )

Google+ photo

Estás comentando usando tu cuenta de Google+. Cerrar sesión / Cambiar )

Conectando a %s

A %d blogueros les gusta esto: