Ejercicio de límite

Calcular el siguiente límite

\displaystyle \lim_{(x,y) \to (0,0)} \frac{x^3 y^2}{x^4 + y^4}

Solución:

\lim_{(x,y) \to (0,0)} \frac{x^3 y^2}{x^4 + y^4}

= \lim_{(x,y) \to (0,0)} \underbrace{x}_{\to 0} \underbrace{\frac{x^2 y^2}{x^4 + y^4}}_{[0,\frac{1}{2}]} = 0

Una manera elegante de justificar que la función está acotada sale de usar que

(x^2 - y^2)^2 = x^4 - 2x^2 y^2 + y^4 \geq 0

Luego,

0 \leq 2 x^2y^2 \leq x^4 + y^4

dividiendo por 2(x^4 + y^4) > 0 (válido en \mathbb{R}^2 - \{(0,0)\})

0 \leq \frac{x^2y^2}{x^4 + y^4} \leq \frac{1}{2}

Anuncios

Responder

Por favor, inicia sesión con uno de estos métodos para publicar tu comentario:

Logo de WordPress.com

Estás comentando usando tu cuenta de WordPress.com. Cerrar sesión / Cambiar )

Imagen de Twitter

Estás comentando usando tu cuenta de Twitter. Cerrar sesión / Cambiar )

Foto de Facebook

Estás comentando usando tu cuenta de Facebook. Cerrar sesión / Cambiar )

Google+ photo

Estás comentando usando tu cuenta de Google+. Cerrar sesión / Cambiar )

Conectando a %s